
Secure Messaging Protocols

Sebastian R. Verschoor

Offensive Technologies – Guest Lecture

10 April 2025

Disclaimer

These slides are optimized for didactic purposes. Primitives and
protocols have been simplified, sometimes to the point where
technically they are incorrect (and most likely insecure).

2 / 56

Outline

Secure Messaging protocols
History
Secure messaging features

Preliminaries
Attacker model
Symmetric Cryptography
Public Key Cryptography

PGP

OTR

SCIMP

Signal protocol
Signal application

3 / 56

History (1/3)

▶ 1991: Phil Zimmermann creates Pretty Good Privacy (PGP)
▶ February 1993: US starts criminal investigation for “munitions

export without a license”
▶ 1995: PGP source code published as a physical book

▶ US first amendment protects export of books
▶ 1996: Criminal investigation was dropped, no charges were

filed
▶ 2004: Nikita Borisov, Ian Goldberg and Eric Brewer create

OTR
▶ “Off-the-Record Communication, or, Why Not To Use PGP”
▶ Has forward secrecy
▶ Has deniability
▶ Requires both parties online for setting up

4 / 56

History (2/3)

▶ 2011: Gary Belvin introduces SecureSMS; “OTR for SMS”
▶ 2012: SCIMP (Silent Circle instant messaging protocol)

▶ By Vinnie Moscaritolo, Gary Belvin and Phil Zimmermann
▶ SecureSMS for XMPP
▶ I formally verified its security with ProVerif

▶ February 2014: Open Whisper Systems releases TextSecure v2
▶ Asynchronous: allows offline initial user message
▶ Later renamed to Signal

▶ May 2014: SC updates to SCIMP v2
▶ Asynchronous: allows offline initial user message

▶ August 2015: SC releases code for SCIMP v2
▶ Adds more inconsistencies between code and documentation
▶ I find and report many security bugs in the code

▶ September 2015: SC discontinues SCIMP, switches to Signal
based protocol

5 / 56

History (3/3)

▶ February 2014: Facebook (now Meta) acquires WhatsApp
▶ April 2014: Signal announces partnership with WhatsApp
▶ April 2016: WhatsApp completes integration of Signal protocol
▶ November 2016: Trevor Perrin and Moxie Marlinspike release

official specification for the Signal protocol
▶ September 2023: Signal gets post-quantum confidentiality

6 / 56

Security and Privacy features

▶ Confidentiality
▶ Integrity
▶ Availability
▶ (Key) Authentication
▶ Forward Secrecy
▶ Post-Compromise Security (PCS)
▶ Deniability vs. Non-repudiation
▶ Transport Privacy

7 / 56

Trust Establishment

▶ Opportunistic encryption
▶ Public Key Infrastructure (PKI)
▶ Web-of-Trust (WoT)
▶ Trust-On-First-Use (TOFU)
▶ Fingerprint verification

▶ Socialist Millionaire Protocol (SMP)
▶ Short Authentication String (SAS)
▶ Safety Numbers

▶ Key directory
▶ Key transparency
▶ Blockchain(?)

8 / 56



Miscellaneous

▶ User experience
▶ Multi-device
▶ Group chat
▶ File transfer
▶ Video-chat
▶ Backups
▶ (Formal) verification
▶ Implementation security
▶ Audits

9 / 56

Apps and protocols
▶ Briar
▶ Discord (Dave)
▶ Dust
▶ Facebook Messenger
▶ Google Allo
▶ Google Chat
▶ Google Messages
▶ iMessage
▶ irc
▶ LINE
▶ Matrix (Olm/Megolm)
▶ Mattermost
▶ Pond
▶ QQ Mobile
▶ Rocket.Chat
▶ Session
▶ SimpleX

▶ Skype
▶ Slack
▶ SnapChat
▶ Teams
▶ Telegram (MTProto)
▶ Threema
▶ Viber
▶ WeChat
▶ WhatsApp
▶ Wickr
▶ Wire
▶ X
▶ XMPP (OMEMO)
▶ Zoom
▶ Zulip
▶ . . .

many use the Signal protocol or a variant

10 / 56

Attacker model

End-to-End security (E2E, sometimes E2EE for encryption)
▶ all messages are handed to the adversary for delivery.1

Alice (k) Mallory Bob (k)

m
m′

Mallory has full control over all messages
▶ she may learn, change, inject, drop, reorder, and replay all

messages
Kerckhoffs principle
▶ Mallory knows everything except the key

1For simplicity, I will omit Mallory from most diagrams for now.
11 / 56

Encryption

Alice (k , m)

key (plaintext) message

Bob (k)

c = Enck(m)encryption
c

ciphertext

m = Deck(c) decryption

m output

Provides confidentiality: Mallory learns nothing2 about m

2almost nothing: I will not formalize this today
12 / 56

Message Authentication Code (MAC)

Alice (k ,m) Bob (k)

t = MACk(m)authenticate
m, t

tag

t
?
= MACk(m) verify

accept m or reject

Provides integrity: Mallory cannot3 change m
Provides authenticity: Bob knows m was sent by Alice
▶ implicit: Bob assumes only Alice knows k

3almost cannot: again we omit the details
13 / 56

Authenticated Encryption
Alice (k ,m, a) Bob (k)

associated data

(ke , ka) = k
c = Encke (m)
t = MACka(c, a)

authenticate-
encrypt

a, c , t

(ke , ka) = k

t
?
= MACka(c, a)

m = Decke (c)

verify-
decrypt

accept m, or reject

▶ Real-world AE often differs from encrypt-then-MAC
▶ Simplified notation:

▶ c = AEADk(m, a) c includes the tag
▶ c = AEnck(m) no a
▶ m = VDeck(c, a) m = ⊥ on rejection

14 / 56

Symmetric Cryptography

Strong assumption:
▶ Alice and Bob have the same secret key k

15 / 56

Public Key Encryption

Alice (pk) Bob (sk)

public key secret (private) key

(Bob’s) keypair

c = Encpk(m)
c

m = Decsk(c)

m

▶ Provides confidentiality
▶ Bob publishes pk, keeps sk secret

▶ Anyone can encrypt, but only Bob can decrypt

16 / 56



Digital Signatures

Alice (sk) Bob (pk)

(Alice’s) keypair

σ = Signsk(m)
m, σ

signature

Verifypk(m, σ)

accept m or reject

▶ Provides integrity and authentication
▶ Alice publishes pk, keeps sk secret

▶ Only Alice can sign, but anyone can verify
▶ Provides non-repudiation: (m, σ) is proof for anyone that Alice

sent m

17 / 56

Cryptographic Hash

Hin out

▶ Let H be a hash function: out = H(in)
▶ large input
▶ small output (digest)

▶ Security
▶ the output “seems random” different ways to formalize this
▶ Mallory cannot compute out without knowing in
▶ Mallory cannot compute in when given out

▶ Note there is no key involved
▶ Mallory can compute H on inputs of her choice

18 / 56

Digital signatures with hashes

Alice (sk) Bob (pk)

σ = Signsk(H(m))

m, σ

Verifypk(H(m), σ)

accept m or reject

19 / 56

Public Key Cryptography

▶ No large messages
▶ PKE has limited size of messages
▶ PKE is relatively slow

▶ How does Alice know that pk belongs to Bob?
Mallory-in-the-Middle (MitM) attack:

Alice (pkm) Mallory (skm, pkb) Bob (skb)

c = Encpkm(m)
c ′ = Encpkb(m)

20 / 56

PKC: key/user authentication

▶ Not just an issue for secure messaging protocols
▶ SSH uses Trust On First Use (TOFU)

▶ asks user to verify public key fingerprint (its hash) on first
login

▶ how to verify this, the protocol does not say
▶ once accepted, it will silently keep accepting until the key

changes
▶ TLS uses certificates and a PKI

▶ you connect to a server
▶ server presents a certificate: “this public key belongs to this

website”
▶ the certificate is signed by an authority
▶ you as a user trust the authority (right?)

▶ PGP, OTR, SCIMP and Signal all use different methods

21 / 56

Pretty Good Privacy

Alice (ska, pkb,m) Bob (pka, skb)

m′ = ("To:Bob",m)
σ = Signska(m

′)
generate random k
c = Enck((m

′, σ))
ck = Encpkb(k)

(c, ck)

‘to in msg’ is not enforced by PGP

k = Decskb(ck)
(m′, σ) = Deck(c)
Verifypka(m

′, σ)

m′ ?
= ("To:Bob",m)

m

22 / 56

PGP: key authentication

▶ PGP uses the Web of Trust (WoT)
▶ You meet in person, then sign each others key

▶ yes there are (were?) key signing parties!

▶ Everyone publishes the signed keys
▶ If you get a key you don’t know, you check if it’s signed by

someone you trust
Everyone loves this system and it scales great in practice!

23 / 56

PGP

▶ PGP uses hybrid encryption
▶ faster + larger messages

▶ PGP has many options
▶ I am 80% sure the above is the sign-and-encrypt option
▶ Without recipient ID, Bob could re-encrypt to others

▶ not part of the PGP specification
▶ Complexity leads to bad user experience, which leads to loss of

security
▶ Two major issues

▶ If a private key leaks, all messages leak (past and future)
▶ Bob can publish (m, σ) as evidence that Alice said m

24 / 56



Off-the-Record (OTR)

Design philosophy: A secure online conversation should be more
like a private in-person conversation
▶ Forward secrecy

▶ leaking long-term keys should not reveal information about old
messages

▶ “key erasure property”
▶ Deniability (informal)

▶ leaking a secure online conversation should not leak any more
information than leaking a plain-text conversation would

▶ has many subtly different mathematical formalizations
▶ unclear if this affects legal deniability

25 / 56

Diffie-Hellman Key Exchange

Alice (x) Bob (y)
g x

g y

private keys

public keys

(g y )x (g x)y

shared secret
▶ correct: g xy = g yx

▶ security: follows from the Diffie-Hellman assumption:
▶ Given g x and g y , it’s hard to compute g xy

26 / 56

OTR: Authenticated Key Exchange

Alice (ska, pkb) Bob (pka, skb)

generate random x generate random y
H(g x)

g y

g x
verify

(ke , ka) = H(g yx)
m = (g x , g y , pka, i = 1)
t = MACka(m)
σ = Signska(t)
c = AEncke ((pka, i , σ))

Bob also computes
these to verify

(k ′e , k
′
a) = H ′(g xy )

m′ = (g y , g x , pkb, j = 1)
t ′ = MACk ′

a
(m′)

σ′ = Signskb(t
′)

c ′ = AEnck ′
e
((pkb, j , σ

′))

“different” hash

c

c ′

27 / 56

OTR

▶ Deniability:
▶ Parties only ever sign public values (g x , g y , pk)

▶ No proof of conversation contents
▶ Parties only ever sign their own public key

▶ No proof of intent to communicate with other party
▶ Forward secrecy:

▶ Securely delete x once we are done with it
▶ (x , g x) is called an ephemeral keypair

▶ No information left on the device to recompute ke
▶ Discard ke once we are done with it

▶ . . . but when is that?

28 / 56

OTR: Sending Data Message
Alice (xi , xi+1, g

yj−1 , g yj ) Bob (g xi′−1 , g xi′ , yj ′ , yj ′+1)

k = H(g yjxi )
c = AEADk(m, (i , j , g xi+1))

i , j , g xi+1 , c

checks if he has g xi and yj
k = H(g xiyj )
m = VDeck(c, (i , j , g

xi+1))
if i == i ′:
i ′ = i ′ + 1
store g xi+1

if j == j ′:
j ′ = j ′ + 1
generate random yj ′+1

next DH key

sender DH key used

last DH key received

29 / 56

OTR

▶ Forward Secrecy:
▶ with every reply we remove an old key
▶ old keys cannot be derived from previous ones
▶ one-sided conversations don’t move forward

▶ could be fixed with heartbeat messages
▶ Post Compromise Security:

▶ if Mallory steals your keys she can read your messages
▶ once you generated a new DH key, she no longer has access
▶ (this is not true if she actively maintains a MitM attack)

▶ Can handle missing a message, however
▶ cannot handle out of order messages

▶ storing old keys would compromise FS

30 / 56

OTR: key authentication

Option 1:
▶ Users can see the used public key fingerprints
▶ Verify these out-of-band

Option 2:
▶ Users are assumed to share some secret that Mallory doesn’t

know
▶ Hashes used public keys and the secret together
▶ Compare if they are the same using a zero-knowledge protocol
▶ this all happens in-band!

Usability studies show issues with both

31 / 56

SCIMP: Key Exchange

Alice (A) Bob (B)

identities

generate random x generate random y
H(g x)

g y

g x

T = (H(g x), g y , g x)
(ke , k

′
e , h, h

′, s, cs) = H((g yx ,T ,A,B))

h

h′

transcript

32 / 56



SCIMP: (key) authentication

▶ There are no public keys, so key authentication is impossible
▶ In fact, the key exchange is unauthenticated
▶ To authenticate the (already established) session:

▶ s is the “short authentication string”
▶ Alice and Bob must compare s out-of-band

▶ But it also means we have good deniability

33 / 56

SCIMP Symmetric Ratchet
ke,1 H ke,2 H ke,3 H ke,4 H ke,5

▶ symmetric key ratchet: ke,i+1 = H(ke,i )

▶ Send index i alongside ciphertext
▶ For example, Bob

▶ has ke,1, gets i = 1 (in order)
▶ decrypts with ke,1
▶ computes ke,2 = H(ke,1)
▶ deletes ke,1
▶ gets i = 4 (messages skipped)
▶ computes ke,5 = H(H(H(ke,2)))
▶ decrypts with ke,4, then deletes ke,4
▶ stores ke,2, ke,3, and ke,5
▶ gets i = 3 (out-of-order message)
▶ decrypts with ke,3
▶ deletes ke,3
▶ ke,2 threatens forward secrecy of msgs ≥ 2

34 / 56

SCIMP: Sending Data Messages

Alice (ke,i , m) Bob (ke,i ′)

c = AEADke,i (m, i)
ke,i+1 = H((ke,i ,A,B, i))
delete ke,i
i = i + 1

i , c

find/compute ke,i
c = VDecke,i (c, i)
forward ratchet if necessary
delete ke,i

35 / 56

SCIMP

▶ Forward secrecy
▶ We forward the ratchet on each sent message
▶ But stealing old keys also leaks newer keys
▶ If a key is to old (> 32 hashes old) it is removed

36 / 56

SCIMP: Rekeying

Alice (A, cs) Bob (B, cs)

generate random x
t = MACcs(H

′(g x))
generate random y
t ′ = MACcs(H

′′(g y ))
H(g x), t

g y , t ′

g x
verify t

verify t ′

T = (H(g x), t, g y , t ′, g x)
(ke , k

′
e , h, h

′, s, cs ′) = H((g yx ,T ,A,B, cs))

h

h′

37 / 56

SCIMP

▶ Future secrecy
▶ rekeying mixes in new ephemeral keys

▶ Unspecified when rekeying should happen
▶ Store oldest unused receive key

▶ in case out-of-order messages arrive
▶ compromise between usability and forward secrecy

▶ On invalid t: all state is deleted
▶ no longer authenticated!
▶ Mallory can easily desynchronize

38 / 56

Signal: X3DH

Alice (a) Server Bob (b)

b is a DH and a sign key
generally not recommended

generate random y
σ = Signb(g

y )
generate random o⃗

gb, g y , σ, g⃗o Bob can go
offline

prevents change

Bob?

gb, g y , σ, [go ]
go picked from g⃗o

server deletes go

generate random x
kr = H((g ya, gbx , g yx , [gox ]))
c = AEADkr (m, (ga, gb, g x))

authenticates Alice
authenticates Bob

forward secrecy
prevents replay

This is a lie!
We actually start the ratchet

ga, g x , c

39 / 56

Signal: X3DH

▶ Asynchronous
▶ Bob’s handshake is independent of who wants to contact him
▶ Bob does not have to be online

▶ All messages are delivered via the server
▶ Mallory may control the server

▶ Alice encrypts a data message with her first message(!)

40 / 56



Signal: Double Ratchet

▶ Combine
▶ the symmetrical ratchet (from SCIMP)

▶ but split the chain key from the message key
▶ the Diffie-Hellman ratchet (from OTR)

▶ but require storage of fewer DH keys

41 / 56

Signal: Symmetric Ratchet

ksc H ksc

km1

H ksc

km2

H ksc

km3

▶ Parties only ever store a single ksc
▶ (ksc , kmi ) = H(ksc)
▶ If Bob has i = 0 and receives i = 3

▶ he iterates H three times
▶ he overwrites ksc with the new value
▶ he stores km1, km2
▶ he uses km3 to decrypt

▶ old km does not impact other keys
▶ thus it does not threaten forward secrecy of other keys

42 / 56

Signal: Symmetric Ratchet

Alice (ksc , i) Bob (k ′rc , i
′)

ksc = k ′rc

(ksc , kmi ) = H(ksc)
header = (i , . . . )
c = AEADkmi

(m, header)
i = i + 1

header , c

while i ′ ≤ i :
(k ′rc , kmi ′) = H(k ′rc)
i ′ = i ′ + 1

m = VDeckmi′ (c, header)

store unused kmi ′

43 / 56

Signal: Diffie-Hellman Ratchet

kr

g x0y0

H kr

krc

g x0y1

H kr

ksc

g x1y1

H kr

krc

g x1y2

H kr

ksc

▶ Bob has kr , y0
▶ Alice sends a new g x0 :

▶ Bob computes (g x0)y0

▶ Bob ratchets: next receiving chain key krc
▶ Bob generates new random y1 and computes g x0y1

▶ Bob ratchets: next sending chain key ksc
▶ Bob sends g y1 to Alice

▶ When Alice sends g x1 , Bob ratchets again (twice)
▶ Old values are deleted

44 / 56

Signal: Diffie-Hellman ratchet

Alice (kr , x , i) Bob (kr , g x ′ , y ′, i ′)

g x , i , c

if g x ̸= g x ′ :
store g x ′ = g x

(kr , krc) = H((kr , g
x ′y ′

))
generate random y ′

(kr , ksc) = H((kr , g
x ′y ′

))
i ′ = 0

while i ′ ≤ i :
(krc , kmi ′) = H(krc)
i ′ = i ′ + 1

m = VDeckmi′ (c, (i , g
x))

only ratchet on a new key

reset message counter
symmetric ratchet

45 / 56

Signal: Diffie-Hellman ratchet

▶ Compare against OTR:
▶ Bob uses g x immediately
▶ Bob verifies authenticity of g x through associated data:

VDeckmi (·, (i , g x , . . . ))
▶ but kmi is derived from g x(!)
▶ this turns out to be secure in this context, but this is not at

all obvious (to me)
▶ store only one g x and one y per peer

▶ What if you missed a message before ratcheting?
▶ header includes a value ip: the total number of messages sent

with the previous send chain key
▶ compute all missed kmi ′ before starting the DH ratchet

46 / 56

Signal: X3DH + ratchet start

Alice (a, g y ) Server Bob (b)

gb, g y , σ, g⃗o

Bob?

gb, g y , σ, go

generate random x
kr = H((g ya, gbx , g yx , gox))
generate random x1
(kr , ksc) = H((kr , g

yx1))
(ksc , km) = H(ksc)
c = AEADkm(m, (ga, gb, g x , 0, g x1))
i = 1

DH ratchet once
symmetric ratchet

ga, g x , g x1 , 0, c

i

first DH ratchet key for Bob

47 / 56

Signal: key authentication

Safety numbers:
▶ these are hashes of the public key (+ some other values)
▶ users should compare these out-of-band

48 / 56



Signal Protocol

What security is not provided by this protocol?
▶ Mallory can block all messages
▶ Server may send the wrong gb:

▶ MitM, if Alice and Bob don’t check the safety number
▶ If there’s no go in original message (server ran out or is

malicious)
▶ Messages can be replayed to Bob
▶ Reduced forward secrecy, until Bob refreshes g y

▶ Key Compromise Impersonation
▶ Unknown Key Share

49 / 56

Signal: Key Compromise Impersonation

▶ Expected: If Mallory steals b, she can impersonate Bob to
others

▶ KCI attack: If Mallory steals y (a key from Bob), she can
impersonate others to Bob

Mallory (ga, y) Bob (b, y , o)

gb, g y , σ, go

generate random x
kr = H((gay , gbx , g yx , gox))
. . .

ga, g x , . . .

50 / 56

Signal: Unknown Key Share

Alice (a) Mallory Bob (b)

gb, g y , σ, go
Mallory?

gb, g y , σ, go

ga, g x , g x1 , i , c

▶ Alice thinks she is talking to Mallory
▶ Mallory substituted her own keys with those of Bob
▶ Alice is actually talking to Bob

51 / 56

Signal: multiple devices
Setup
▶ Desktop displays QR

▶ address
▶ ephemeral public key

▶ Phone scans QR, encrypts to device’s ephemeral key
▶ identity key pair
▶ account info
▶ linking token

▶ Desktop registers with server as new device
Sending messages
▶ Encrypt the message to each device of the user
▶ Encrypt the message to each other device of yourself

Phishing
▶ Mallory sends device link QR, disguised as group invite QR
▶ user scans and doesn’t read the pop-up message
▶ Mallory can now read along and/or impersonate

52 / 56

Signal: sealed sender

Hide sender from metadata

Alice (a) Bob (b)

c = AEnc(m)
generate random x
(kc , k) = H((gb, g x , gbx))
ca = AEnck(g

a)
k ′ = H((kc , ca, g

ba))
c ′ = AEnck ′((cert, c))

normal Signal data encryption

sender identity certificate

g x , ca, c
′

▶ Delivered to server over one-way authenticated channel
▶ Cautious senders should use TOR/VPN to hide their ip address

53 / 56

Signal: attachments

▶ generate a random key k

▶ encrypt the file using k

▶ upload the encrypted file to the file server
▶ send k and address to recipient over a pairwise Signal session
▶ only need to re-encrypt k and address for other recipients

54 / 56

Signal WhatsApp: groups

Each group member:
▶ generates a sending chain key ksc
▶ generates an ephemeral signing key pair (sk, pk)
▶ sends ksc , pk to each group member over a pairwise Signal

session
▶ if anyone leaves the group: delete ksc (and sk?)

For each message m

▶ ratchet forward: (ksc , km) = H(ksc)

▶ encrypt: c = Enckm(m)

▶ authenticate: σ = Signsk(c)

▶ send (c , σ) to the server
▶ server forward (c, σ) to all group members

55 / 56

References

▶ 2015, Unger et al. SoK: Secure Messaging
https://doi.org/10.1109/SP.2015.22

▶ PGP: RFC 9580
▶ OTR:

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
▶ SCIMP: https://ia.cr/2016/703
▶ Signal: https://signal.org/docs/

Slides will be made available on my website zeroknowledge.me

56 / 56

https://doi.org/10.1109/SP.2015.22
https://www.rfc-editor.org/info/rfc9580
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://ia.cr/2016/703
https://signal.org/docs/
https://www.zeroknowledge.me/talks/#2025-ot

	Outline
	Secure Messaging protocols
	History
	Secure messaging features

	Preliminaries
	Attacker model
	Symmetric Cryptography
	Public Key Cryptography

	PGP
	OTR
	SCIMP
	Signal protocol
	Signal application

	References

