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Disclaimer

These slides are optimized for didactic purposes. Primitives and
protocols have been simplified, sometimes to the point where
technically they are incorrect (and most likely insecure).
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History (1/3)

▶ 1991: Phil Zimmermann creates Pretty Good Privacy (PGP)
▶ February 1993: US starts criminal investigation for “munitions

export without a license”
▶ 1995: PGP source code published as a physical book

▶ US first amendment protects export of books
▶ 1996: Criminal investigation was dropped, no charges were

filed
▶ 2004: Nikita Borisov, Ian Goldberg and Eric Brewer create

OTR
▶ “Off-the-Record Communication, or, Why Not To Use PGP”
▶ Has forward secrecy
▶ Has deniability
▶ Requires both parties online for setting up
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History (2/3)

▶ 2011: Gary Belvin introduces SecureSMS; “OTR for SMS”
▶ 2012: SCIMP (Silent Circle instant messaging protocol)

▶ By Vinnie Moscaritolo, Gary Belvin and Phil Zimmermann
▶ SecureSMS for XMPP
▶ I formally verified its security with ProVerif

▶ February 2014: Open Whisper Systems releases TextSecure v2
▶ Asynchronous: allows offline initial user message
▶ Later renamed to Signal

▶ May 2014: SC updates to SCIMP v2
▶ Asynchronous: allows offline initial user message

▶ August 2015: SC releases code for SCIMP v2
▶ Adds more inconsistencies between code and documentation
▶ I find and report many security bugs in the code

▶ September 2015: SC discontinues SCIMP, switches to Signal
based protocol
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History (3/3)

▶ February 2014: Facebook (now Meta) acquires WhatsApp
▶ April 2014: Signal announces partnership with WhatsApp
▶ April 2016: WhatsApp completes integration of Signal protocol
▶ November 2016: Trevor Perrin and Moxie Marlinspike release

official specification for the Signal protocol
▶ September 2023: Signal gets post-quantum confidentiality

6 / 56

Security and Privacy features

▶ Confidentiality
▶ Integrity
▶ Availability
▶ (Key) Authentication
▶ Forward Secrecy
▶ Post-Compromise Security (PCS)
▶ Deniability vs. Non-repudiation
▶ Transport Privacy
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Trust Establishment

▶ Opportunistic encryption
▶ Public Key Infrastructure (PKI)
▶ Web-of-Trust (WoT)
▶ Trust-On-First-Use (TOFU)
▶ Fingerprint verification

▶ Socialist Millionaire Protocol (SMP)
▶ Short Authentication String (SAS)
▶ Safety Numbers

▶ Key directory
▶ Key transparency
▶ Blockchain(?)
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Miscellaneous

▶ User experience
▶ Multi-device
▶ Group chat
▶ File transfer
▶ Video-chat
▶ Backups
▶ (Formal) verification
▶ Implementation security
▶ Audits
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Apps and protocols
▶ Briar
▶ Discord (Dave)
▶ Dust
▶ Facebook Messenger
▶ Google Allo
▶ Google Chat
▶ Google Messages
▶ iMessage
▶ irc
▶ LINE
▶ Matrix (Olm/Megolm)
▶ Mattermost
▶ Pond
▶ QQ Mobile
▶ Rocket.Chat
▶ Session
▶ SimpleX

▶ Skype
▶ Slack
▶ SnapChat
▶ Teams
▶ Telegram (MTProto)
▶ Threema
▶ Viber
▶ WeChat
▶ WhatsApp
▶ Wickr
▶ Wire
▶ X
▶ XMPP (OMEMO)
▶ Zoom
▶ Zulip
▶ . . .

many use the Signal protocol or a variant
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Attacker model

End-to-End security (E2E, sometimes E2EE for encryption)
▶ all messages are handed to the adversary for delivery.1

Alice (k) Mallory Bob (k)

m
m′

Mallory has full control over all messages
▶ she may learn, change, inject, drop, reorder, and replay all

messages
Kerckhoffs principle
▶ Mallory knows everything except the key

1For simplicity, I will omit Mallory from most diagrams for now.
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Encryption

Alice (k , m)

key (plaintext) message

Bob (k)

c = Enck(m)encryption
c

ciphertext

m = Deck(c) decryption

m output

Provides confidentiality: Mallory learns nothing2 about m

2almost nothing: I will not formalize this today
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Message Authentication Code (MAC)

Alice (k ,m) Bob (k)

t = MACk(m)authenticate
m, t

tag

t
?
= MACk(m) verify

accept m or reject

Provides integrity: Mallory cannot3 change m
Provides authenticity: Bob knows m was sent by Alice
▶ implicit: Bob assumes only Alice knows k

3almost cannot: again we omit the details
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Authenticated Encryption
Alice (k ,m, a) Bob (k)

associated data

(ke , ka) = k
c = Encke (m)
t = MACka(c, a)

authenticate-
encrypt

a, c , t

(ke , ka) = k

t
?
= MACka(c, a)

m = Decke (c)

verify-
decrypt

accept m, or reject

▶ Real-world AE often differs from encrypt-then-MAC
▶ Simplified notation:

▶ c = AEADk(m, a) c includes the tag
▶ c = AEnck(m) no a
▶ m = VDeck(c, a) m = ⊥ on rejection
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Symmetric Cryptography

Strong assumption:
▶ Alice and Bob have the same secret key k
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Public Key Encryption

Alice (pk) Bob (sk)

public key secret (private) key

(Bob’s) keypair

c = Encpk(m)
c

m = Decsk(c)

m

▶ Provides confidentiality
▶ Bob publishes pk, keeps sk secret

▶ Anyone can encrypt, but only Bob can decrypt
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Digital Signatures

Alice (sk) Bob (pk)

(Alice’s) keypair

σ = Signsk(m)
m, σ

signature

Verifypk(m, σ)

accept m or reject

▶ Provides integrity and authentication
▶ Alice publishes pk, keeps sk secret

▶ Only Alice can sign, but anyone can verify
▶ Provides non-repudiation: (m, σ) is proof for anyone that Alice

sent m
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Cryptographic Hash

Hin out

▶ Let H be a hash function: out = H(in)
▶ large input
▶ small output (digest)

▶ Security
▶ the output “seems random” different ways to formalize this
▶ Mallory cannot compute out without knowing in
▶ Mallory cannot compute in when given out

▶ Note there is no key involved
▶ Mallory can compute H on inputs of her choice
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Digital signatures with hashes

Alice (sk) Bob (pk)

σ = Signsk(H(m))

m, σ

Verifypk(H(m), σ)

accept m or reject
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Public Key Cryptography

▶ No large messages
▶ PKE has limited size of messages
▶ PKE is relatively slow

▶ How does Alice know that pk belongs to Bob?
Mallory-in-the-Middle (MitM) attack:

Alice (pkm) Mallory (skm, pkb) Bob (skb)

c = Encpkm(m)
c ′ = Encpkb(m)
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PKC: key/user authentication

▶ Not just an issue for secure messaging protocols
▶ SSH uses Trust On First Use (TOFU)

▶ asks user to verify public key fingerprint (its hash) on first
login

▶ how to verify this, the protocol does not say
▶ once accepted, it will silently keep accepting until the key

changes
▶ TLS uses certificates and a PKI

▶ you connect to a server
▶ server presents a certificate: “this public key belongs to this

website”
▶ the certificate is signed by an authority
▶ you as a user trust the authority (right?)

▶ PGP, OTR, SCIMP and Signal all use different methods
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Pretty Good Privacy

Alice (ska, pkb,m) Bob (pka, skb)

m′ = ("To:Bob",m)
σ = Signska(m

′)
generate random k
c = Enck((m

′, σ))
ck = Encpkb(k)

(c, ck)

‘to in msg’ is not enforced by PGP

k = Decskb(ck)
(m′, σ) = Deck(c)
Verifypka(m

′, σ)

m′ ?
= ("To:Bob",m)

m
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PGP: key authentication

▶ PGP uses the Web of Trust (WoT)
▶ You meet in person, then sign each others key

▶ yes there are (were?) key signing parties!

▶ Everyone publishes the signed keys
▶ If you get a key you don’t know, you check if it’s signed by

someone you trust
Everyone loves this system and it scales great in practice!
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PGP

▶ PGP uses hybrid encryption
▶ faster + larger messages

▶ PGP has many options
▶ I am 80% sure the above is the sign-and-encrypt option
▶ Without recipient ID, Bob could re-encrypt to others

▶ not part of the PGP specification
▶ Complexity leads to bad user experience, which leads to loss of

security
▶ Two major issues

▶ If a private key leaks, all messages leak (past and future)
▶ Bob can publish (m, σ) as evidence that Alice said m
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Off-the-Record (OTR)

Design philosophy: A secure online conversation should be more
like a private in-person conversation
▶ Forward secrecy

▶ leaking long-term keys should not reveal information about old
messages

▶ “key erasure property”
▶ Deniability (informal)

▶ leaking a secure online conversation should not leak any more
information than leaking a plain-text conversation would

▶ has many subtly different mathematical formalizations
▶ unclear if this affects legal deniability
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Diffie-Hellman Key Exchange

Alice (x) Bob (y)
g x

g y

private keys

public keys

(g y )x (g x)y

shared secret
▶ correct: g xy = g yx

▶ security: follows from the Diffie-Hellman assumption:
▶ Given g x and g y , it’s hard to compute g xy
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OTR: Authenticated Key Exchange

Alice (ska, pkb) Bob (pka, skb)

generate random x generate random y
H(g x)

g y

g x
verify

(ke , ka) = H(g yx)
m = (g x , g y , pka, i = 1)
t = MACka(m)
σ = Signska(t)
c = AEncke ((pka, i , σ))

Bob also computes
these to verify

(k ′e , k
′
a) = H ′(g xy )

m′ = (g y , g x , pkb, j = 1)
t ′ = MACk ′

a
(m′)

σ′ = Signskb(t
′)

c ′ = AEnck ′
e
((pkb, j , σ

′))

“different” hash

c

c ′
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OTR

▶ Deniability:
▶ Parties only ever sign public values (g x , g y , pk)

▶ No proof of conversation contents
▶ Parties only ever sign their own public key

▶ No proof of intent to communicate with other party
▶ Forward secrecy:

▶ Securely delete x once we are done with it
▶ (x , g x) is called an ephemeral keypair

▶ No information left on the device to recompute ke
▶ Discard ke once we are done with it

▶ . . . but when is that?
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OTR: Sending Data Message
Alice (xi , xi+1, g

yj−1 , g yj ) Bob (g xi′−1 , g xi′ , yj ′ , yj ′+1)

k = H(g yjxi )
c = AEADk(m, (i , j , g xi+1))

i , j , g xi+1 , c

checks if he has g xi and yj
k = H(g xiyj )
m = VDeck(c, (i , j , g

xi+1))
if i == i ′:
i ′ = i ′ + 1
store g xi+1

if j == j ′:
j ′ = j ′ + 1
generate random yj ′+1

next DH key

sender DH key used

last DH key received
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OTR

▶ Forward Secrecy:
▶ with every reply we remove an old key
▶ old keys cannot be derived from previous ones
▶ one-sided conversations don’t move forward

▶ could be fixed with heartbeat messages
▶ Post Compromise Security:

▶ if Mallory steals your keys she can read your messages
▶ once you generated a new DH key, she no longer has access
▶ (this is not true if she actively maintains a MitM attack)

▶ Can handle missing a message, however
▶ cannot handle out of order messages

▶ storing old keys would compromise FS
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OTR: key authentication

Option 1:
▶ Users can see the used public key fingerprints
▶ Verify these out-of-band

Option 2:
▶ Users are assumed to share some secret that Mallory doesn’t

know
▶ Hashes used public keys and the secret together
▶ Compare if they are the same using a zero-knowledge protocol
▶ this all happens in-band!

Usability studies show issues with both
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SCIMP: Key Exchange

Alice (A) Bob (B)

identities

generate random x generate random y
H(g x)

g y

g x

T = (H(g x), g y , g x)
(ke , k

′
e , h, h

′, s, cs) = H((g yx ,T ,A,B))

h

h′

transcript
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SCIMP: (key) authentication

▶ There are no public keys, so key authentication is impossible
▶ In fact, the key exchange is unauthenticated
▶ To authenticate the (already established) session:

▶ s is the “short authentication string”
▶ Alice and Bob must compare s out-of-band

▶ But it also means we have good deniability
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SCIMP Symmetric Ratchet
ke,1 H ke,2 H ke,3 H ke,4 H ke,5

▶ symmetric key ratchet: ke,i+1 = H(ke,i )

▶ Send index i alongside ciphertext
▶ For example, Bob

▶ has ke,1, gets i = 1 (in order)
▶ decrypts with ke,1
▶ computes ke,2 = H(ke,1)
▶ deletes ke,1
▶ gets i = 4 (messages skipped)
▶ computes ke,5 = H(H(H(ke,2)))
▶ decrypts with ke,4, then deletes ke,4
▶ stores ke,2, ke,3, and ke,5
▶ gets i = 3 (out-of-order message)
▶ decrypts with ke,3
▶ deletes ke,3
▶ ke,2 threatens forward secrecy of msgs ≥ 2
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SCIMP: Sending Data Messages

Alice (ke,i , m) Bob (ke,i ′)

c = AEADke,i (m, i)
ke,i+1 = H((ke,i ,A,B, i))
delete ke,i
i = i + 1

i , c

find/compute ke,i
c = VDecke,i (c, i)
forward ratchet if necessary
delete ke,i
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SCIMP

▶ Forward secrecy
▶ We forward the ratchet on each sent message
▶ But stealing old keys also leaks newer keys
▶ If a key is to old (> 32 hashes old) it is removed
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SCIMP: Rekeying

Alice (A, cs) Bob (B, cs)

generate random x
t = MACcs(H

′(g x))
generate random y
t ′ = MACcs(H

′′(g y ))
H(g x), t

g y , t ′

g x
verify t

verify t ′

T = (H(g x), t, g y , t ′, g x)
(ke , k

′
e , h, h

′, s, cs ′) = H((g yx ,T ,A,B, cs))

h

h′
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SCIMP

▶ Future secrecy
▶ rekeying mixes in new ephemeral keys

▶ Unspecified when rekeying should happen
▶ Store oldest unused receive key

▶ in case out-of-order messages arrive
▶ compromise between usability and forward secrecy

▶ On invalid t: all state is deleted
▶ no longer authenticated!
▶ Mallory can easily desynchronize
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Signal: X3DH

Alice (a) Server Bob (b)

b is a DH and a sign key
generally not recommended

generate random y
σ = Signb(g

y )
generate random o⃗

gb, g y , σ, g⃗o Bob can go
offline

prevents change

Bob?

gb, g y , σ, [go ]
go picked from g⃗o

server deletes go

generate random x
kr = H((g ya, gbx , g yx , [gox ]))
c = AEADkr (m, (ga, gb, g x))

authenticates Alice
authenticates Bob

forward secrecy
prevents replay

This is a lie!
We actually start the ratchet

ga, g x , c
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Signal: X3DH

▶ Asynchronous
▶ Bob’s handshake is independent of who wants to contact him
▶ Bob does not have to be online

▶ All messages are delivered via the server
▶ Mallory may control the server

▶ Alice encrypts a data message with her first message(!)
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Signal: Double Ratchet

▶ Combine
▶ the symmetrical ratchet (from SCIMP)

▶ but split the chain key from the message key
▶ the Diffie-Hellman ratchet (from OTR)

▶ but require storage of fewer DH keys
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Signal: Symmetric Ratchet

ksc H ksc

km1

H ksc

km2

H ksc

km3

▶ Parties only ever store a single ksc
▶ (ksc , kmi ) = H(ksc)
▶ If Bob has i = 0 and receives i = 3

▶ he iterates H three times
▶ he overwrites ksc with the new value
▶ he stores km1, km2
▶ he uses km3 to decrypt

▶ old km does not impact other keys
▶ thus it does not threaten forward secrecy of other keys
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Signal: Symmetric Ratchet

Alice (ksc , i) Bob (k ′rc , i
′)

ksc = k ′rc

(ksc , kmi ) = H(ksc)
header = (i , . . . )
c = AEADkmi

(m, header)
i = i + 1

header , c

while i ′ ≤ i :
(k ′rc , kmi ′) = H(k ′rc)
i ′ = i ′ + 1

m = VDeckmi′ (c, header)

store unused kmi ′
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Signal: Diffie-Hellman Ratchet

kr

g x0y0

H kr

krc

g x0y1

H kr

ksc

g x1y1

H kr

krc

g x1y2

H kr

ksc

▶ Bob has kr , y0
▶ Alice sends a new g x0 :

▶ Bob computes (g x0)y0

▶ Bob ratchets: next receiving chain key krc
▶ Bob generates new random y1 and computes g x0y1

▶ Bob ratchets: next sending chain key ksc
▶ Bob sends g y1 to Alice

▶ When Alice sends g x1 , Bob ratchets again (twice)
▶ Old values are deleted
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Signal: Diffie-Hellman ratchet

Alice (kr , x , i) Bob (kr , g x ′ , y ′, i ′)

g x , i , c

if g x ̸= g x ′ :
store g x ′ = g x

(kr , krc) = H((kr , g
x ′y ′

))
generate random y ′

(kr , ksc) = H((kr , g
x ′y ′

))
i ′ = 0

while i ′ ≤ i :
(krc , kmi ′) = H(krc)
i ′ = i ′ + 1

m = VDeckmi′ (c, (i , g
x))

only ratchet on a new key

reset message counter
symmetric ratchet
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Signal: Diffie-Hellman ratchet

▶ Compare against OTR:
▶ Bob uses g x immediately
▶ Bob verifies authenticity of g x through associated data:

VDeckmi (·, (i , g x , . . . ))
▶ but kmi is derived from g x(!)
▶ this turns out to be secure in this context, but this is not at

all obvious (to me)
▶ store only one g x and one y per peer

▶ What if you missed a message before ratcheting?
▶ header includes a value ip: the total number of messages sent

with the previous send chain key
▶ compute all missed kmi ′ before starting the DH ratchet
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Signal: X3DH + ratchet start

Alice (a, g y ) Server Bob (b)

gb, g y , σ, g⃗o

Bob?

gb, g y , σ, go

generate random x
kr = H((g ya, gbx , g yx , gox))
generate random x1
(kr , ksc) = H((kr , g

yx1))
(ksc , km) = H(ksc)
c = AEADkm(m, (ga, gb, g x , 0, g x1))
i = 1

DH ratchet once
symmetric ratchet

ga, g x , g x1 , 0, c

i

first DH ratchet key for Bob
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Signal: key authentication

Safety numbers:
▶ these are hashes of the public key (+ some other values)
▶ users should compare these out-of-band
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Signal Protocol

What security is not provided by this protocol?
▶ Mallory can block all messages
▶ Server may send the wrong gb:

▶ MitM, if Alice and Bob don’t check the safety number
▶ If there’s no go in original message (server ran out or is

malicious)
▶ Messages can be replayed to Bob
▶ Reduced forward secrecy, until Bob refreshes g y

▶ Key Compromise Impersonation
▶ Unknown Key Share
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Signal: Key Compromise Impersonation

▶ Expected: If Mallory steals b, she can impersonate Bob to
others

▶ KCI attack: If Mallory steals y (a key from Bob), she can
impersonate others to Bob

Mallory (ga, y) Bob (b, y , o)

gb, g y , σ, go

generate random x
kr = H((gay , gbx , g yx , gox))
. . .

ga, g x , . . .
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Signal: Unknown Key Share

Alice (a) Mallory Bob (b)

gb, g y , σ, go
Mallory?

gb, g y , σ, go

ga, g x , g x1 , i , c

▶ Alice thinks she is talking to Mallory
▶ Mallory substituted her own keys with those of Bob
▶ Alice is actually talking to Bob
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Signal: multiple devices
Setup
▶ Desktop displays QR

▶ address
▶ ephemeral public key

▶ Phone scans QR, encrypts to device’s ephemeral key
▶ identity key pair
▶ account info
▶ linking token

▶ Desktop registers with server as new device
Sending messages
▶ Encrypt the message to each device of the user
▶ Encrypt the message to each other device of yourself

Phishing
▶ Mallory sends device link QR, disguised as group invite QR
▶ user scans and doesn’t read the pop-up message
▶ Mallory can now read along and/or impersonate
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Signal: sealed sender

Hide sender from metadata

Alice (a) Bob (b)

c = AEnc(m)
generate random x
(kc , k) = H((gb, g x , gbx))
ca = AEnck(g

a)
k ′ = H((kc , ca, g

ba))
c ′ = AEnck ′((cert, c))

normal Signal data encryption

sender identity certificate

g x , ca, c
′

▶ Delivered to server over one-way authenticated channel
▶ Cautious senders should use TOR/VPN to hide their ip address
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Signal: attachments

▶ generate a random key k

▶ encrypt the file using k

▶ upload the encrypted file to the file server
▶ send k and address to recipient over a pairwise Signal session
▶ only need to re-encrypt k and address for other recipients
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Signal WhatsApp: groups

Each group member:
▶ generates a sending chain key ksc
▶ generates an ephemeral signing key pair (sk, pk)
▶ sends ksc , pk to each group member over a pairwise Signal

session
▶ if anyone leaves the group: delete ksc (and sk?)

For each message m

▶ ratchet forward: (ksc , km) = H(ksc)

▶ encrypt: c = Enckm(m)

▶ authenticate: σ = Signsk(c)

▶ send (c , σ) to the server
▶ server forward (c, σ) to all group members
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Slides will be made available on my website zeroknowledge.me
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